Source code for gwcs.wcstools

# Licensed under a 3-clause BSD style license - see LICENSE.rst
import functools
import warnings

import numpy as np
from astropy import coordinates as coord
from astropy import units as u
from astropy.modeling import fitting, models, projections
from astropy.modeling.bounding_box import CompoundBoundingBox, ModelBoundingBox
from astropy.modeling.core import Model

from .coordinate_frames import CelestialFrame, CompositeFrame, Frame2D, SpectralFrame
from .utils import (
    UnsupportedProjectionError,
    UnsupportedTransformError,
    _compute_lon_pole,
)

__all__ = ["grid_from_bounding_box", "wcs_from_fiducial", "wcs_from_points"]


[docs] def wcs_from_fiducial( fiducial, coordinate_frame=None, projection=None, transform=None, name="", bounding_box=None, input_frame=None, ): """ Create a WCS object from a fiducial point in a coordinate frame. If an additional transform is supplied it is prepended to the projection. Parameters ---------- fiducial : `~astropy.coordinates.SkyCoord` or tuple of float One of: A location on the sky in some standard coordinate system. A Quantity with spectral units. A list of the above. coordinate_frame : ~gwcs.coordinate_frames.CoordinateFrame` The output coordinate frame. If fiducial is not an instance of `~astropy.coordinates.SkyCoord`, ``coordinate_frame`` is required. projection : `~astropy.modeling.projections.Projection` Projection instance - required if there is a celestial component in the fiducial. transform : `~astropy.modeling.Model` (optional) An optional transform to be prepended to the transform constructed by the fiducial point. The number of outputs of this transform must equal the number of axes in the coordinate frame. name : str Name of this WCS. bounding_box : tuple The bounding box over which the WCS is valid. It is a tuple of tuples of size 2 where each tuple represents a range of (low, high) values. The ``bounding_box`` is in the order of the axes, `~gwcs.coordinate_frames.CoordinateFrame.axes_order`. For two inputs and axes_order(0, 1) the bounding box is ((xlow, xhigh), (ylow, yhigh)). input_frame : ~gwcs.coordinate_frames.CoordinateFrame` The input coordinate frame. """ from .wcs import WCS if transform is not None and not isinstance(transform, Model): msg = "Expected transform to be an instanceof astropy.modeling.Model" raise UnsupportedTransformError(msg) if isinstance(fiducial, coord.SkyCoord): coordinate_frame = CelestialFrame( reference_frame=fiducial.frame, unit=(fiducial.spherical.lon.unit, fiducial.spherical.lat.unit), ) fiducial_transform = _sky_transform(fiducial, projection) elif isinstance(coordinate_frame, CompositeFrame): trans_from_fiducial = [] for item in coordinate_frame.frames: ind = coordinate_frame.frames.index(item) try: model = frame2transform[item.__class__]( fiducial[ind], projection=projection ) except KeyError as err: msg = f"Coordinate frame {item} is not supported" raise TypeError(msg) from err trans_from_fiducial.append(model) fiducial_transform = functools.reduce( lambda x, y: x & y, list(trans_from_fiducial) ) else: # The case of one coordinate frame with more than 1 axes. try: fiducial_transform = frame2transform[coordinate_frame.__class__]( fiducial, projection=projection ) except KeyError as err: msg = f"Coordinate frame {coordinate_frame} is not supported" raise TypeError(msg) from err if transform is not None: forward_transform = transform | fiducial_transform else: forward_transform = fiducial_transform if bounding_box is not None: if len(bounding_box) != forward_transform.n_outputs: msg = ( "Expected the number of items in 'bounding_box' to be equal to the " "number of outputs of the forawrd transform." ) raise ValueError(msg) forward_transform.bounding_box = bounding_box[::-1] if input_frame is None: input_frame = "detector" return WCS( output_frame=coordinate_frame, input_frame=input_frame, forward_transform=forward_transform, name=name, )
def _verify_projection(projection): if projection is None: msg = "Celestial coordinate frame requires a projection to be specified." raise ValueError(msg) if not isinstance(projection, projections.Projection): raise UnsupportedProjectionError(projection) def _sky_transform(skycoord, projection): """ A sky transform is a projection, followed by a rotation on the sky. """ _verify_projection(projection) lon_pole = _compute_lon_pole(skycoord, projection) if isinstance(skycoord, coord.SkyCoord): lon, lat = skycoord.spherical.lon, skycoord.spherical.lat else: lon, lat = skycoord sky_rotation = models.RotateNative2Celestial(lon, lat, lon_pole) return projection | sky_rotation def _spectral_transform(fiducial, **kwargs): """ A spectral transform is a shift by the fiducial. """ return models.Shift(fiducial) def _frame2D_transform(fiducial, **kwargs): return functools.reduce(lambda x, y: x & y, [models.Shift(val) for val in fiducial]) frame2transform = { CelestialFrame: _sky_transform, SpectralFrame: _spectral_transform, Frame2D: _frame2D_transform, }
[docs] def grid_from_bounding_box(bounding_box, step=1, center=True, selector=None): """ Create a grid of input points from the WCS bounding_box. Note: If ``bbox`` is a tuple describing the range of an axis in ``bounding_box``, ``x.5`` is considered part of the next pixel in ``bbox[0]`` and part of the previous pixel in ``bbox[1]``. In this way if ``bbox`` describes the edges of an image the indexing includes only pixels within the image. Parameters ---------- bounding_box : tuple | ~astropy.modeling.bounding_box.ModelBoundingBox | ~astropy.modeling.bounding_box.CompoundBoundingBox The bounding_box of a WCS object, `~gwcs.wcs.WCS.bounding_box`. step : scalar or tuple Step size for grid in each dimension. Scalar applies to all dimensions. center : bool selector : tuple | None If selector is set then it must be a selector tuple and bounding_box must be a CompoundBoundingBox. The bounding_box is in order of X, Y [, Z] and the output will be in the same order. Examples -------- >>> bb = ((-1, 2.9), (6, 7.5)) >>> grid_from_bounding_box(bb, step=(1, .5), center=False) array([[[-1. , 0. , 1. , 2. , 3. ], [-1. , 0. , 1. , 2. , 3. ], [-1. , 0. , 1. , 2. , 3. ], [-1. , 0. , 1. , 2. , 3. ]], [[ 6. , 6. , 6. , 6. , 6. ], [ 6.5, 6.5, 6.5, 6.5, 6.5], [ 7. , 7. , 7. , 7. , 7. ], [ 7.5, 7.5, 7.5, 7.5, 7.5]]]) >>> bb = ((-1, 2.9), (6, 7.5)) >>> grid_from_bounding_box(bb) array([[[-1., 0., 1., 2., 3.], [-1., 0., 1., 2., 3.]], [[ 6., 6., 6., 6., 6.], [ 7., 7., 7., 7., 7.]]]) Returns ------- x, y [, z]: ndarray Grid of points. """ # noqa: E501 def _bbox_to_pixel(bbox): return (np.floor(bbox[0] + 0.5), np.ceil(bbox[1] - 0.5)) if selector is not None and not isinstance(bounding_box, CompoundBoundingBox): msg = "Cannot use selector with a non-CompoundBoundingBox" raise ValueError(msg) if isinstance(bounding_box, CompoundBoundingBox): if selector is None: msg = "selector must be set when bounding_box is a CompoundBoundingBox" raise ValueError(msg) bounding_box = bounding_box[selector] if isinstance(bounding_box, ModelBoundingBox): input_names = bounding_box.model.inputs # Get tuple of tuples of the bounding box values bounding_box = tuple( tuple(bounding_box[name]) for name in input_names if name not in bounding_box.ignored_inputs ) # 1D case if np.isscalar(bounding_box[0]): ndim = 1 bounding_box = (bounding_box,) else: ndim = len(bounding_box) bb = tuple([_bbox_to_pixel(bb) for bb in bounding_box]) if center else bounding_box step = np.atleast_1d(step) if ndim > 1 and len(step) == 1: step = np.repeat(step, ndim) if len(step) != len(bb): msg = "`step` must be a scalar, or tuple with length matching `bounding_box`" raise ValueError(msg) slices = [] for d, s in zip(bb, step, strict=False): slices.append(slice(d[0], d[1] + s, s)) grid = np.mgrid[slices[::-1]][::-1] if ndim == 1: return grid[0] return grid
[docs] def wcs_from_points( xy, world_coords, proj_point="center", projection=None, poly_degree=4, polynomial_type="polynomial", ): """ Given two matching sets of coordinates on detector and sky, compute the WCS. Notes ----- This function implements the following algorithm: ``world_coords`` are transformed to a projection plane using the specified projection. A polynomial fits ``xy`` and the projected coordinates. The fitted polynomials and the projection transforms are combined into a transform from detector to sky. The input coordinate frame is set to ``detector``. The output coordinate frame is initialized based on the frame in the fiducial. Parameters ---------- xy : tuple of 2 ndarrays Points in the input coordinate frame - x, y inputs. world_coords : `~astropy.coordinates.SkyCoord` Points in the output coordinate frame. The order matches the order of ``xy``. proj_point : `~astropy.coordinates.SkyCoord` A fiducial point in the output coordinate frame. If set to 'center' (default), the geometric center of input world coordinates will be used as the projection point. To specify an exact point for the projection, a Skycoord object with a coordinate pair can be passed in. projection : `~astropy.modeling.projections.Projection` A projection type. One of the projections in `~astropy.modeling.projections.projcodes`. The direction is from sky to detector. Defaults to TAN projection (`astropy.modeling.projections.Sky2Pix_TAN`). poly_degree : int Degree of polynomial model to be fit to data. Defaults to 4. polynomial_type : str one of "polynomial", "chebyshev", "legendre". Defaults to "polynomial". Returns ------- wcsobj : `~gwcs.wcs.WCS` a WCS object for this observation. """ from .wcs import WCS projection = projections.Sky2Pix_TAN() if projection is None else projection supported_poly_types = { "polynomial": models.Polynomial2D, "chebyshev": models.Chebyshev2D, "legendre": models.Legendre2D, } x, y = xy if not isinstance(world_coords, coord.SkyCoord): msg = "`world_coords` must be an `~astropy.coordinates.SkyCoord`" raise TypeError(msg) try: lon, lat = world_coords.data.lon.deg, world_coords.data.lat.deg except AttributeError: unit_sph = world_coords.unit_spherical lon, lat = unit_sph.lon.deg, unit_sph.lat.deg if isinstance(proj_point, coord.SkyCoord): if proj_point.size != 1: msg = "proj_point must be a SkyCoord object with a single point." raise ValueError(msg) # transform to the frame of world_coords proj_point = proj_point.transform_to(world_coords) crval = (proj_point.data.lon, proj_point.data.lat) frame = proj_point.frame elif proj_point == "center": # use center of input points sc1 = coord.SkyCoord(lon.min() * u.deg, lat.max() * u.deg) sc2 = coord.SkyCoord(lon.max() * u.deg, lat.min() * u.deg) pa = sc1.position_angle(sc2) sep = sc1.separation(sc2) midpoint_sc = sc1.directional_offset_by(pa, sep / 2) crval = (midpoint_sc.data.lon, midpoint_sc.data.lat) frame = sc1.frame else: msg = ( "`proj_point` must be set to 'center', or an" "`~astropy.coordinates.SkyCoord` object with " "a pair of points." ) raise ValueError(msg) if not isinstance(projection, projections.Projection): msg = f"Unsupported projection code {projection}" raise UnsupportedProjectionError(msg) if polynomial_type not in supported_poly_types: msg = ( f"Unsupported polynomial_type: {polynomial_type}. " f"Only one of {supported_poly_types.keys()} is supported." ) raise ValueError(msg) lon_pole = _compute_lon_pole(crval, projection) skyrot = models.RotateCelestial2Native( crval[0].to_value(u.deg), crval[1].to_value(u.deg), lon_pole.to_value(u.deg) ) trans = skyrot | projection projection_x, projection_y = trans(lon, lat) poly = supported_poly_types[polynomial_type](poly_degree) fitter = fitting.LevMarLSQFitter() with warnings.catch_warnings(): warnings.simplefilter("ignore") poly_x = fitter(poly, x, y, projection_x) poly_y = fitter(poly, x, y, projection_y) distortion = models.Mapping((0, 1, 0, 1)) | poly_x & poly_y poly_x_inverse = fitter(poly, projection_x, projection_y, x) poly_y_inverse = fitter(poly, projection_x, projection_y, y) distortion.inverse = ( models.Mapping((0, 1, 0, 1)) | poly_x_inverse & poly_y_inverse ) transform = distortion | projection.inverse | skyrot.inverse skyframe = CelestialFrame(reference_frame=frame) detector = Frame2D(name="detector") pipeline = [(detector, transform), (skyframe, None)] return WCS(pipeline)